首页> 外文OA文献 >A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem Model
【2h】

A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem Model

机译:一种全局敏感性分析和贝叶斯推理框架,用于改进基于过程的陆地生态系统模型的参数估计和预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A global sensitivity analysis and Bayesian inference framework was developed for improving the parameterization and predictability of a monthly time step process-based biogeochemistry model. Using a Latin Hypercube sampler and an existing Terrestrial Ecosystem Model (TEM), a set of 500,000 Monte Carlo ensemble simulations was conducted for a black spruce forest ecosystem. A global sensitivity analysis was then conducted to identify the key model parameters and examine the interaction structures among TEM parameters. Bayesian inference analysis was also performed using these ensemble simulations and eddy flux data of carbon, latent heat flux, and MODIS gross primary production (GPP) to reduce the uncertainty of parameter estimation and prediction of TEM. We found that (1) the simulated carbon fluxes are mostly affected by parameters of the maximum rate of photosynthesis (CMAX), the half-saturation constant for CO2 uptake by plants (kc), the half-saturation constant for Photosynthetically Active Radiation used by plants (ki), and the change in autotrophic respiration due to 10°C temperature increase (RHQ10); (2) the effect of parameters on seasonal carbon dynamics varies from one parameter to another during a year; (3) to well constrain the uncertainties of TEM predictions and parameters using the Bayesian inference technique, at least two different fluxes of NEP, GPP, and ecosystem respiration (RESP) are required; and (4) different assumptions of the error structures of the flux data used in the Bayesian inference analysis result in different uncertainty bounds of the posterior parameters and model predictions. We further found that, using the Bayesian framework and eddy flux and satellite data, the uncertainty of simulated carbon fluxes has been remarkably reduced. The developed global sensitivity analysis and Bayesian framework could further be used to analyze and improve the predictability and parameterization of relatively coarse time step biogeochemistry models when the eddy flux and satellite data are available for other terrestrial ecosystems.
机译:开发了全局敏感性分析和贝叶斯推断框架,以改进基于时步的生物地球化学模型的参数化和可预测性。使用拉丁文Hypercube采样器和现有的陆地生态系统模型(TEM),对黑云杉森林生态系统进行了一组500,000蒙特卡洛集成实验。然后进行全局敏感性分析,以识别关键模型参数并检查TEM参数之间的相互作用结构。使用这些集成模拟和碳,潜热通量和MODIS初级生产总值(GPP)的涡流数据也进行了贝叶斯推断分析,以减少参数估计和TEM预测的不确定性。我们发现(1)模拟的碳通量主要受以下参数影响:最大光合作用速率(CMAX),植物吸收CO2的半饱和常数(kc),用于植物的光合作用活性辐射的半饱和常数植物(ki),以及由于温度升高10°C(RHQ10)而引起的自养呼吸变化; (2)参数对季节性碳动态的影响在一年中从一个参数变化到另一个参数; (3)为了使用贝叶斯推断技术很好地限制TEM预测和参数的不确定性,需要至少两个不同的NEP,GPP和生态系统呼吸(RESP)通量; (4)贝叶斯推断分析中使用的通量数据误差结构的不同假设导致后验参数和模型预测的不确定范围不同。我们进一步发现,使用贝叶斯框架和涡流及卫星数据,模拟碳通量的不确定性已大大降低。当涡流和卫星数据可用于其他陆地生态系统时,发达的全球敏感性分析和贝叶斯框架可进一步用于分析和改进相对粗略的时间步长生物地球化学模型的可预测性和参数化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号